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ABSTRACT 

Let G be a Lie group, H a closed subgroup, L a unitary representation of H 
and U L the corresponding induced representation on G. The main result of 
this paper, extending Ol'~anskii'~ version of the Frobenius reciprocity theorem, 
expresses the intertwining number of U L and an irreducible unitary representa- 
tion V of G in terms of L and the restriction of Voo to H. 

. 

Throughout,  G will be a Lie group and H a closed subgroup. For  any strongly 

continuous representation R we denote by H(R) the Hilbert space on which R acts 

and by H~(R) the linear subspace of all C~ for R, topologized as in [-3] ; 

H~(R) is then a Fr6chet space and, corresponding to R, there are natural repre- 

sentations R~ and R* whose representation spaces are Ho~(R) and its weak dual 

H~(R)*, respectively. I f  6G and 6n are the modular functions of  G and H, we set 

6(h) = 6~(h)-~Sn(h) ~ , h ~ H. 

Let U L be a unitary representation of G induced by a unitary representa- 

tion L of  H (see [1] for the definition) and let V be an arbitrary irreducible 

unitary representation of G. Assuming G/H compact and L finite-dimensional, 

Ol'~anskii [-6] proved that the intertwining spaces Homo(H(V),H(UL))and 

Homn(H((5 | L)*, Ho0(V)*) are naturally isomorphic. But L being finite-dimen- 

sional, the second space can be replaced in this statement by Homn(Hoo(V), 

H(6 | L)). Our Theorem 2 asserts that, thus reformulated, the result remains 

valid without assuming L to be of finite dimension. If  G/H is not compact it is 

still possible to give a similar description ofHom6(H(V),H(UL)). Specifically, we 
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prove that HomG(H(V),H(UL)) is isomorphic to a certain linear subspace of 

Homn(H~o(V), H(fi | L)) (Theorem 1), which, of course, coincides with the whole 

space when G/H is compact. There is a close analogy between this theorem and 

the reciprocity theorem of K. Maurin and L. Maurin [4], the only difference 

being that, in their formulation, the role of Ho~(V) is assumed by another dense 

subspace of H(V), denoted here by Ho(V ), which is the image of the projective 

tensor product Cc(G ) ~ H(V) under the map r | v ~ V(r equipped with the 

direct image of the topology of Cc(G) @ H(V). The advantage of working with 

H~o(V) instead of Ho(V) is due, among other things, to the fact that there are 

nice descriptions of the first space, such as Nelson's and Goodman's character- 

izations of C~-vectors. 

The arguments proving Theorem 1 also lead to a criterion for irreducibility of 

an induced representation (Theorem 3) which turns out to be useful in some cases, 

although its applicability seems to be rather limited. 

All proofs are very straightforward. The main reference is Poulsen's paper [7]. 

. 

Let L be a unitary representation of H and V a unitary representation of G. 

We begin with the construction of an injective linear mapping 

i:HomG(Hoo(V),Hoo(uL)) ~ HOmH(Hoo(V),H(6 | L)). Let A~ ~ Homa(Hoo(V), 

Ho~(UL)). Since H~(U z) is contained in C| (cf. [7, Th. 5.1]), we may 

define a mapping e: H~o(V) ~ H(L) by putting 

av = (Ao~v)(e) for veHoo(V), 

where e is the unity of G. Then e is continuous, since the point evaluationf ~f(e)  

from H| L) to H(L) is continuous (cf. [7, Corollary 5.1]), and 

aV(h)v = (a~oV(h)v)(e) = (U*(h)aoov)(e) = (a~v)(h) = 6(h)L(h)av, 

for any h E H, that is a eHomH(H~(V),H(6 |  We set i (A~)= ~. The 

injectivity of i easily follows noting that 

aV(g)v = (Aoo V(g)v) (e) = (U~(g)Ao~v) (e) = (Ao:v) (g), 

for any g e G. 

We want to characterize the image of i. Let a be arbitrary in 

Homn(H~(V), H(6 | L)); for any v e H~(V) we define a mapping av: G ~ H(L)by 
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a,(g) = aV(g)v, g ~ G. 

LEMMA 1. Let v~H~(V).  Then: 

i) 

ii) 

iii) 
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o~,, is of  class Ca~ 

~,,(hg) = 6(h)L(h )~, (o),for 9 ~ G, h ~ H; 

i f  2~ denotes the left invariant differential operator on G eorrespondin9 

d 
= -di aV(g)V(exp tX)v [t=o = aV(g)dV(X)v. 

Q.E.D. 

REMARK. The properties (i) and (ii)imply in particular that, using the notation 

in [1]. ~ e F * .  

For  an adequate formulation of  the reciprocity theorem we introduce the 

following notion which corresponds to Maurin's concept of a (V, L)-automorphic 

form. 

DEFINITION. An intertwining operator ct ~ HomH(Ho~(V),H(3 | L)) is called 

essential if for any v ~ Ho~(V), c~o ~ H(uL). The linear subspace of 

Hom~(Hoo(V), H(6 | L)) consisting of all essential intertwining operators will be 

denoted by Hom~(Ho~(V), H(6 | L)). 

Note that if ct = i (A~o) with Aoo ~ HomG (Hoo (V), H~o (UL)) then cry = 

= Aoov ~ H(UL), hence ~ is in Hom~(Hco(V)~ H(5| L)). 

LEMMA 2. Hom~(H~o(V), H(6 | L)) coincides with the imaoe of  i, so that 

i: HomG(Hco(V), Hoo(un)) ~ Hom~(H~o(V), H(5 |  is an isomorphism. 

PROOF. For  ~ ~ Hom~(H~(V),  H(3 |  let ~: H ~ ( V ) o H ( U  z) be the map- 

ping which carries v into ~ .  By Lemma 1 (iii) we know that )7(~(v))=~(dV(X)v) 

and so )~'(~(v))~H(U L) for any X~  1I (~) and veHoo(V). By [7, Th. 5.1] this 

means that ~(v) ~ Hoo(UL). We shall prove now that c7 : Ho~(V) oH|  L) 

is closed and so is continuous. Let (v,} be a sequence in H| such that v , o  0 
and r since the point evaluation is continuous on H~o(U L) 

X ~ 5- But then 

d 
(~a~)(g) = ~- ao(g" exp tX) ], =o 

to an element X in the universal enveloping algebra ~ (~) of the Lie algebra 

q~ of  G, we have .(ot~ = ~dvcx)~. 

PROOF. The first assertion is a consequence of the fact that g ~ V(g)v is a 

C~~ from G to H~o(V) [7, Proposition 1.2] and the second follows from 

the very definition of ~ .  To prove (iii), it suffices to verify that ~ = O~dV~X v for 
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(cf. [7, Corollary 5.1]), we get ~(v,,)(g)~f(g)for each g~G. But ~(v,)(g) 

= aV(g)v, ~ O, hence f =  0. In addition 

(~(v(g)v) ) (x)= ~ v ( x ) V ( g ) v  = (~(v))(xg)  = (u~(g)~(v))(x) ,  x e G, 

hence ~ intertwines Vo~ and U~. Clearly i(~) = a. Q.E.D 

Now let A e H o m  G (H(V), H(UL)) and let r(A) denote its restriction to 

H~(V). By [7, Th. 3.1] r(A)eHomG(H+(V),Ho~(uL)). Thenj  = i . r  is a linear 

mapping of Hom G (H(V),H(UL)) to Hom~(H+(V),H(5 | L)). 

THEOREM 1. Let V be an irreducible unitary representation of G and L a 
unitary representation of H. Then 

j: nom~(H(V), H(uL)) --+ Hom,~(H| H(5 | L)) 

s an isomorphism. 

PROOF. Since i is an isomorphism it remains to show that 

r: Hom~(H(V), H(uL)) --+ Homa(H~(V),  Hoo(uL)) 

is also an isomorphism. Since Hoo(V) is dense in H(V), r is injective. On the other 

hand, if A~ ~ Hom~(Ho~(V),H~o(UL)), according to [-7, Th. 3.2] A| has a unique 

closed extension A from H(V) to H(UL)which  intertwines V and U k T o  

prove that a ~ HomG(H(V), H(U~')), let a = T I A [, where I A I = ( A-A)+' be the 

polar decomposition; I A] is a self-adjoint operator which commutes with all 

V(g), g ~ G and V is irreducible, hence by [-5, w no. 6], ]a] must be scalar and 

so A is everywhere defined. Now obviously r(A) = A~ o. Q.E.D 

There is an important case in which Hom~(Hoo(V), H(5 | L)) coincides with 

the whole Homn(H~(V),H(5 | L)), namely when G/H is compact. 

THEOREM 2. Let V be an irreducible unitary representation of G and L a 

unitary rerepsentation of H. Suppose G/H is compact. Then 

H o m a ( n ( v ) ,  H(U r -- Homn(Hoo(V), H(5 | L)). 

PROOf. Since G/H is compact we can choose a positive compactIy supported 

function ~b on G with the property: [.n ~b(hg)dh = 1 for all g ~ G (see, e.g., [2, 

Ch. VII, w no. 2]). Now if a ~ HomH(H~o(V),H(5 | L)) then 

II II 2 = fo  v(g)v ll:d  < + ,  
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hence gv ~ H(U L) for any v ~ H~(V). Therefore 

= Hom~(n~(v)~ H(6 | L)). 

Israel J. Math., 

Homn(H~o(V), H(5 | L)) 

Q.E.D. 

REMARK. In the above statement HomH(H| H(5 | L)) can be replaced by 

HomH(H~(V), Ho~(5 | L)). Indeed, the inclusion Homn(H~(V), Hoo(5 | L)) 

~_ Homn(Hoo(V), H(6 | L)) is obvious. Conversely, suppose a ~ Homn(H~(V), 

H(5 | L)). For v ~ Hoo(V) the mapping h ~ 5(h)L(h)av = a~(h) is C oo by Lemma 

1 (i). Thus a,~ H~o(6 @ L) for every v ~ H~(V). The continuity of a, viewed as 

a mapping of Hoo(V) into H~(6 @ L), is a direct consequence of the closed graph 

theorem. 

3. 

The results in the preceding section lead in particular to the following criterion 

for irreducibility of an induced representation. 

THEOREM 3. Let L be a unitary representation of H. Then U l is irreducible 

i f  and only / f  Hom~(Hoo(UL), n(6 | L)) is one-dimensional. 

PROOF. If U ~ is irreducible then by Theorem 1 

dim Homen(H~(UL),H(5 | L)) = dim Hom~(H(UL), H(UL)) = i. 

Conversely, suppose dimHom~n(H~(UL),H(5@L))= I. Then, by Lemma 2, 

dim HomG(HOO(UL), HOO(UL)) = 1. On the other hand dim Hom~(H(UL), H(UT)) 
�9 L < dim Hom~(H~(U ), H~(UL)) since the restriction mapping r: 

Hom~(/_/(VL), H(uL)) __. Hom~(H~(UL),H.o(U L )) 

is injective. Thus dim HomG(H(UL), H(UL)) = 1. Q.E.D. 

COROLLARY. Let L be a unitary representation of H. I f  HomH(Hoo(U L ), 

H(5 |  is one-dimensional, then U L is irreducible. 

We close this section with two simple examples which show how this last result 

can be handled in concrete situations. 

1. Let G be the "Heisenberg group" of all real 3 • 3 matrices of EXAMPLE 

the form 

l a c  
g =  0 1 b . 

0 0 l J  
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0 , Y = 0 and Z = l0  0 
o oJ o oJ Lo o oJ 

form a basis for the Lie algebra of G. 
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It is well-known that all the infinite-dtmensional irreducible unitary repre- 

sentations of G are the representations 

(V~(g)f) (t) = exp (i2(bt + c + ab /2))f(t + a), 

g = exp(aX + bY +cZ), f~L2(R) 

acting on LZ(R), where 2 E R, ;. ~ 0. 

The representation V~ maps X, Y and Z into d ~dr, multiplication by i2t and 

multiplication by i2 respectively. Using Goodman 's  characterization of C ~ 

vectors [3,Th. 1.1] it follows that the space of C| for Vz is the Schwartz 

space of rapidly decreasing functions on R. 

Now we show that the irreducibility of Vz can be easily deduced by applying 

the above corollary. First we note that Va is unitarily equivalent with the represen- 

tation of G induced by the character 

L).(h) = e ~ac, h =exp(bY + cZ) 

of the subgroup H = {exp(bY + cZ); b, c~R}. Now, an element 

a ~ Homu(H~o(Vz), H(Lz)) is exactly a tempered distribution with the property 

f e'~bt+c'f(t)d~(t)=e~a~f f(t)do~(t) foranyb,  ceR.  

But then a must be a scalar multiple of the Dirac distribution 8o. So 

dim Homu(Ho~(Vx),H(L~) ) = 1. 

EXAMPLE 2. Let G be the group of affine transformations of the real line 

realized as the group of all 2 • 2 matrices of the form 

ra b 1 g -- I with a > 0, b e R . 
Lo a - ' J  

Consider the unitary representations of G on L2(R) 

where 

(V• ~- e x p ( +  iaet)f(t + b), g = expaX �9 exp bY, 
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t0 OJ and Y= Lo- �89  

is a basis for the Lie algebra of G. The representation V+ maps X into multi- 

plication by + id and Y into d/dt. Accordingly, the space of C~ for V_+ 

consists of all C~176 fwi th  the property: f r and e"~f (t) are in L 2 (R) 

for any integer n >= 0. On the other hand, V_+ is unitarily equivalent with the 

representation induced by the character 

L+_(h) = e +i" , h =expaX 

of the subgroup H = (exp aX; a ~ R}. 

Now, an element c~ ~ Homa(Ho~(Vj:),H(L:~)) defines 

satisfies the condition 

a distribution which 

f iaet)f(t)d~(t) = e +~a J f(t)d~(t), for a ~ R .  
t" 

exp (--}- a n y  

But again this happens only when ~ is proportional to the Dirac distribution 6 o. 

This proves the irreducibility of V:~. 
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